Wiele przedmiotów, które mają być jednocześnie lekkie i wytrzymałe, jest wykonanych z tytanu. Jednak materiał ten nie jest tak wytrzymały, jak teoretycznie mógłby być. Dzieje się tak, gdyż wytrzymałość materiału zależy od tego, w jaki sposób układają się budujące go atomy. A przypadkowe błędy, które narastają w procesie produkcyjnym powodują, że materiał staje się coraz słabszy. To jednak oznacza, że jeśli bylibyśmy w stanie budować materiał atom po atomie, możemy uzyskać niezwykle wytrzymałe materiały.

To właśnie zrobili naukowcy z University of Pennsylvania, University of Illinosi at Urbana-champaign oraz University of Cambridge. Jak dowiadujemy się z Nature Scientific Reports, zbudowali oni, atom po atomie, kawałek niklu, który jest równie wytrzymały co tytan, ale 4-5 razy lżejszy. W procesie budowy powstały równomiernie rozłożone puste przestrzenie, pory, które nadały niklowi strukturę podobną do drewna. Uczeni postanowili wykorzystać te puste miejsca.

Tak jak w drewnie porowatość służy biologicznej funkcji – transportowi energii – tak i tutaj można wykorzystać ją do tego samego celu. Pory we wspomnianej płachcie można wypełnić materiałami działającymi jak anoda i katoda. Dzięki temu temu metal może służyć jednocześnie do budowania np. protez czy skrzydeł samolotu oraz do przechowywania energii.

Materiały występujące w naturze są pełne defektów na poziomie atomowym. Gdybyśmy potrafili uzyskać tytan pozbawiony tych wad, byłby on 10-krotnie bardziej wytrzymały niż tytan produkowany obecnie. Eksperci od dawna próbują zaradzić temu problemowi i starają się zyskać kontrolę nad układem atomów tak, by w jak największym stopniu kontrolować właściwości mechaniczne materiałów.

Profesor James Pikul, który stał na czele grupy badawczej, i jego koledzy osiągnęli sukces naśladując strukturę drewna.
Przyczyną, dla której mówimy tutaj o metalicznym drewnie nie jest gęstość naszego materiału, która jest podobna do gęstości drewna, ale jego struktura komórkowa. Materiały komórkowe są porowate. Jeśli popatrzymy na ziarno drewna, to zobaczymy fragmenty gęste i grube, które utrzymują całą strukturę, oraz fragmenty porowate, których celem jest wykonywanie funkcji biologicznych, takich jak transport różnych składników pomiędzy komórkami, mówi Pikul.

Folia z metalicznego drewna umieszczona na plastikowym podłożu, © University of Pennsylvania

Nasza struktura jest podobna. Są tutaj grube i gęste fragmenty z metalowymi wspornikami oraz fragmenty porowate, z pustymi przestrzeniami. Pracujemy tutaj na takich wymiarach, przy których długość wsporników jest bliska teoretycznemu maksimum, dodaje uczony.

Wsporniki, o których mówi, mają szerokość około 10 nanometrów i są długie na około 100 atomów niklu. Ważnym osiągnięciem jest fakt, że udało się uzyskać wyjątkowo duży kawałek metalu o tak dobrze kontrolowanej strukturze. Większość przykładów takich wytrzymałych materiałów to kawałki o rozmiarach małej pchły. Nasza technika pozwala uzyskać fragmenty metalicznego drewna, które są 400-krotnie większe, stwierdza Pikul.

Opracowana właśnie metoda wykorzystuje niewielkie plastikowe sfery o średnicy kilkuset nanometrów. Sfery zawieszone znajdują się w wodzie. Woda jest powoli odparowywana, dzięki czemu sfery układają się w uporządkowaną strukturę. Za pomocą galwanostegii na wierzch nakłada się cienką warstwę chromu, a następnie między plastikowe sfery wprowadzany jest nikiel. Później sfery są rozpuszczane. Uzyskujemy w ten sposób kawałek niklu o boku 1 centymetra. W tak małym fragmencie znajduje się około miliarda niklowych wsporników, wyjaśnia Pikul.

Jako, że niemal 70% uzyskanego materiału stanowią puste przestrzenie, jest on niezwykle lekki w porównaniu z wytrzymałością. Mógłby unosić się na wodzie.

Kolejnym celem zespołu Pikula jest opracowanie takiej metody produkcji, by można było wykorzystać ją w celach komercyjnych. Użyte materiały nie są szczególnie kosztowne, jednak problemem jest infrastruktura potrzebna do produkcji. W tej chwili jej rozmiary są znacząco ograniczone. Gdy zaś powstaną próbki większych rozmiarów, naukowcy będą mogli przeprowadzić dodatkowe testy w makroskali. Nie wiemy, na przykład, czy nasze metaliczne drewno pod wpływem przyłożonej siły będzie się gięło jak metal, czy rozpryśnie się jak szkło. Musimy rozumieć, jak defekty w strukturze wsporników wpływają na właściwości naszego metalicznego drewna, dodaje uczony.

Zanim jednak powstaną metody produkcji większych kawałków materiału, Pikul i jego zespół będą próbowali wykorzystać puste przestrzenie do wprowadzenia tam innych materiałów. Pewnego dnia może uda się te przestrzenie wypełnić żywymi organizmami lub materiałami przechowującymi energię, prognozuje naukowiec.

 

 

 

Źródło: PhysOrg, KopalniaWiedzy, https://www.treehugger.com/biomimicry/engineers-develop-strong-light-metallic-wood.html