Podczas snu wolnofalowego w mózgu zachodzą niesamowite sprzężone zjawiska. Gdy neurony się wyciszają, po kilku sekundach następuje odpływ krwi z głowy, a na jej miejsce napływa płyn mózgowo-rdzeniowy (ang. cerebrospinal fluid, CSF). Obmywa on mózg rytmicznymi, pulsującymi falami.

Naukowcy z Uniwersytetu w Bostonie podkreślają, że wolne fale w aktywności neuronalnej przyczyniają się do konsolidacji śladów pamięciowych, zaś płyn mózgowo-rdzeniowy usuwa z mózgu toksyczne białka powstające podczas przemiany materii. Dotąd nie było jednak wiadomo, czy te dwa procesy są ze sobą związane. Podczas ostatnich badań na grupie 13 osób w wieku 23-33 lat wykazano, że najpewniej tak.

Laura Lewis ma nadzieję, że pewnego dnia dzięki odkryciom jej zespołu uda się lepiej zrozumieć zaburzenia snu związane np. z autyzmem czy chorobą Alzheimera.

Zestawienie fal mózgowych z wzorcami hemodynamicznymi i dot. płynu mózgowo-rdzeniowego może także rzucić nieco światła na procesy występujące podczas normalnego starzenia. Gdy ludzie się starzeją, często ich mózgi generują mniej wolnych fal, co z kolei może się przekładać na przepływ krwi przez mózg i na zmniejszenie pulsowania CSF podczas snu. Skutkiem tych zjawisk będzie zaś nagromadzenie toksycznych białek i pogorszenie pamięci. Wcześniej naukowcy analizowali te procesy z osobna, teraz wydaje się jednak, że są one ze sobą bardzo blisko związane.

By lepiej zrozumieć zjawiska zachodzące w czasie snu, Lewis chce rozszerzyć badania na starszych dorosłych. Amerykanom zależy też na bardziej sprzyjających snowi metodach obrazowania aktywności mózgu (badania na 13-osobowej grupie prowadzono w hałasujących skanerach do rezonansu magnetycznego).

Lewis cieszy się z uzyskanych dotąd wyników. Obecnie na podstawie obserwacji płynu mózgowo-rdzeniowego wiadomo np., czy ktoś w ogóle śpi, czy nie. To takie dramatyczne zjawisko. Nie zdawaliśmy sobie sprawy, że pulsowanie CSF w czasie snu istnieje, tymczasem wolne fale w czasie snu NREM prowadzą do oscylacji objętości krwi, skutkujących napływem i odpływem CSF do i z mózgu.

Naukowcy chcą teraz rozwiązać kolejną zagadkę: w jaki sposób fale mózgowe, przepływ krwi i CSF są ze sobą tak idealnie skoordynowane? Widzimy, że zmiana neuronalna zawsze występuje pierwsza, później ma miejsce odpływ krwi, a po niej napływ CSF do głowy. Niewykluczone, że gdy neurony się wyciszają, nie potrzebują tyle tlenu, dlatego krew odpływa z tego obszaru. Ponieważ ciśnienie w mózgu spada, szybko napływa CSF, by potrzymać je na bezpiecznym poziomie. To jednak tylko jedna z możliwości. Jaki jest związek przyczynowo-skutkowy? Czy w ogóle jedno z tych zjawisk powoduje inne? A może istnieje inny czynnik, który napędza je wszystkie?

 

 

ŹródłoBoston University, , debuglies.com, newscientist.com