W detektorze XENON1T we włoskim Laboratorium Narodowym Gran Sasso zarejestrowano, po raz pierwszy w historii, rozpad atomu ksenonu-124. Doszło do niego w formie podwójnego wychwytu elektronu. To niezwykle rzadkie wydarzenie. Okres połowicznego rozpadu tego pierwiastka jest bowiem bilion razy dłuższy niż wiek wszechświata. To wyjaśnia, dlaczego zaobserwowanie tego procesu jest tak wyjątkowym wydarzeniem.

Detektor XENON1T

Fakt, że byliśmy w stanie bezpośrednio obserwować ten proces pokazuje, jak potężnymi metodami detekcji dysponujemy. Sprawdzają się one również w przypadku sygnałów, które nie pochodzą z czarnych dziur, mówi profesor Christian Weinheimer z Uniwersytetu w Münster, który stał na czele grupy badawczej.

XENON1T to wspólny projekt, przy którym pracuje 160 naukowców z Europy, USA i Bliskiego Wschodu. Laboratorium Narodowe Gran Sasso, którego właścicielem jest włoski Narodowy Instytut Fizyki Jądrowej, znajduje się na głębokości 1400 metrów pod masywem Gran Sasso. To wykrywacz ciemnej materii, a jego umiejscowienie głęboko pod ziemią ma chronić przed promieniowaniem kosmicznym generującym fałszywe sygnały. Zgodnie z teoretycznymi założeniami, cząstki ciemnej materii mają zderzać się z atomami w detektorze, a sygnały ze zderzeń będą rejestrowane.

Detektor XENON1T

Centralna część XENON1T to cylindryczny zbiornik o długości 1 metra wypełniony 3200 kilogramami płynnego ksenonu o temperaturze -95 stopni Celsjusza. Gdy ciemna materia zderzy się z atomem ksenonu, energia trafia do jądra, które pobudza jądra innych atomów. Wskutek tego pobudzenia pojawia się słaba emisja w zakresie ultrafioletu, którą wykrywają czujniki na górze i na dole cylindra. Te same czujniki są też zdolne do zarejestrowania ładunku elektrycznego pojawiającego się wskutek zderzenia.

Wyniki uzyskane przez grupę Weinheimera dowodzą, że XENON1T jest też zdolny do rejestrowania innych rzadkich zjawisk fizycznych, takich jak podwójny wychwyt elektronu.

Jądro atomowe zawiera protony o ładunku dodatnim oraz obojętne neutrony. Całość otoczona jest elektronami, których ładunek jest ujemny. Jądro ksenonu-124 zawiera 54 protony i 70 neutronów. W procesie podwójnego wychwytu elektronów dwa protony jednocześnie przechwytują dwa elektrony, w wyniku czego powstały dwa neutrony i zostały wyemitowane dwa neutrino. Pozostałe elektrony przeorganizowują się tak, by uzupełnić luki spowodowane wychwyceniem elektronów na najbardziej wewnętrznej powłoce. Energia uwolniona w całym tym procesie jest przenoszona przez promieniowanie rentgenowskie oraz elektrony Augera.

Podwójny wychwyt elektronu to niezwykle rzadki proces rozpadu. Można go zaobserwować dla tych nielicznych pierwiastków, dla których inne rodzaje rozpadu są praktycznie niemożliwe. Jakby jeszcze tego było mało, same sygnały tego procesu jest bardzo trudno wykryć, gdyż są one schowane we wszechobecnych sygnałach naturalnej radioaktywności.

Detektor XENON1T

Udało się to jednak w detektorze XENON1T. Promienie rentgenowskie z podwójnego wychwytu elektronu wygenerowały w płynnym ksenonie sygnał świetlny. Pojawiły się też wolne elektrony. Elektrony te przesunęły się w stronę wypełnionej gazem górnej części cylindra, gdzie wygenerowały kolejny sygnał świetlny. Różnica w czasie pomiędzy pojawieniem się obu sygnałów świetlnych odpowiadała czasowi, jaki elektrony potrzebowały, by dotrzeć do góry detektora. Naukowcy wykorzystali te informacje do odnalezienia miejsca, w którym doszło do podwójnego wychwytu elektronu. Z siły sygnałów wyliczono też energię uwolnioną w tym procesie.

Wszystkie sygnały zarejestrowano w czasie dłuższym niż rok. Jednak rozpatrywanie ich z osobna nie pozwoliło na zauważenie zjawiska, które miało miejsce. Dlatego też sama rejestracja sygnałów nie wystarczała. O tym, że doszło do podwójnego wychwytu elektronów, procesu świadczącego o rozpadzie ksenonu-124 uczeni dowiedzieli się dopiero po ukończeniu wszystkich analiz. Dopiero po tym i po sprawdzeniu danych z regionu, w którym zaszło wspomniane zjawisko, można było jednoznacznie stwierdzić, że 126 elementów znajdujących się w zarejestrowanych danych zostało wywołanych podwójnym wychwytem elektronu w jądrze ksenonu-124.

Na podstawie uzyskanych danych naukowcy wyliczyli, że okres połowicznego rozpadu ksenonu-124 wynosi 1,8X1022 lat. Jest to najwolniejszy proces, jaki kiedykolwiek bezpośrednio zaobserwowano.

Ksenon-124 nie jest jednak rekordzistą pod tym względem. Wiadomo, że jeszcze dłuższy okres połowicznego rozpadu ma tellur-128. Tego zjawiska nigdy jednak bezpośrednio nie zaobserwowano, a okres półrozpadu tego pierwiastka wyliczono pośrednio z innego procesu.

XENON1T zbierał dane do grudnia 2018 roku. Wtedy to został wyłączony i obecnie jest rozbudowywany do urządzenia XENONnT. Znajdzie się w nim trzykrotnie więcej płynnego ksenonu niż obecnie, a urządzenie zostanie też lepiej zabezpieczone przez szumem tła. Dzięki temu stanie się ono czulsze o cały rząd wielkości.

 

 

 

Źródło: The XENON Experiment, KopalniaWiedzy
0 0 votes
Article Rating