Żyjemy w nowoczesnym świecie pełnym urządzeń zasilanych energią elektryczną. Rozwój nowych technologii sprawia, że telefony komórkowe, laptopy, tablety i wiele innych sprzętów mobilnych towarzyszy nam na każdym kroku. Najczęściej stosowane do zasilania urządzeń mobilnych są baterie litowo-jonowe tzw. Li-ion, jednak ze względu na ich powolne ładowanie, krótki czas pracy oraz szkodliwość dla środowiska naturalnego (ze względu na wysoką zawartość metali ciężkich m.in. kobalt) coraz większą uwagę poświęca się superkondensatorem. To urządzenia łączące cechy baterii oraz kondensatorów. Co się z tym wiąże? Dłuższa żywotność, prostszy recykling, a przede wszystkim szybsze ładowanie, czyli oszczędność czasu. Wszak, czas to pieniądz.

2.85V, 3400 Faradów, 0.28 mili Ohm, 13.7 cm długości i 6 cm średnicy – dostępny w eBay za 46 USD

Zalety superkondensatorów tkwią w ich konstrukcji, na którą składają się dwa podstawowe elementy. Pierwszy z nich to układ dwóch wysokoporowatych elektrod, które odseparowane są od siebie także porowatym materiałem chroniącym przed zwarciem. Najczęściej ta część superkondensatora jest wykonana na bazie węgla aktywnego, który jest stosowany w tych urządzeniach nie bez powodu. W jego porach umieszczany jest drugi, kluczowy składnik superkondensatora – elektrolit zawierający jony, czyli atomy obdarzone ładunkiem elektrycznym (dodatnio naładowane – kationy oraz ujemnie naładowane – aniony). Jony mogą przemieszczać się we wnętrzu porowatego materiału w zależności od przyłożonego między elektrodami napięcia. Co ciekawe, im więcej porów we wnętrzu elektrod, tym więcej energii może być zgromadzone w urządzeniu. Pomijając elementy takie jak obudowa itp., można powiedzieć, że to wszystko.

Co jednak czyni superkondensatory tak obiecującymi urządzeniami do magazynowania energii? Są to wcześniej wspomniane pory, a także sposób w jaki poruszają się jony. Średnica i długość kanałów we wnętrzu porowatych elektrod ma kluczowe znaczenie. Gdy pory są szerokie, urządzenie ładuje się szybko, ale dostarcza niewiele energii, podczas gdy zmniejszenie ich średnicy pozwala na dostarczenie większej ilości energii, jednak urządzenie ładuje się o wiele wolniej. Czy istnieje zatem sposób na przyspieszenie jonów w wąskich porach? O tym w listopadowym numerze czasopisma naukowego Nature Communications pisze Svyatoslav Kondrat – naukowiec z Instytutu Chemii Fizycznej, Polskiej Akademii Nauk (IChF PAN).

Autorzy badań wykorzystali materiał porowaty na bazie węgla o średnicy porów poniżej jednego nanometra, przy czym należy pamiętać, że 1 nm to jedna miliardowa część metra. Pory te są zatem tak małe, że nie są widoczne dla ludzkiego oka. Materiał ten został nasączony cieczą jonową, która jest niczym innym jak solą w stanie ciekłym, przy czym nie zawiera żadnego rozpuszczalnika np. wody. Zatem ciecz jonowa to upłynniona sól. Jony z cieczy jonowej wypełniają pory, a po przyłożeniu napięcia pomiędzy elektrodami zaczynają się poruszać. Co się jednak stanie, gdy polaryzacja trwa dłuższą chwilę? Czy wszystkie jony poruszają się w równym tempie? Niestety, jony we wnętrzu elektrod zachowają się niczym samochody we wnętrzu tunelu poruszające się w przeciwnych kierunkach. Na dodatek, każdy z nich porusza się na jednym pasie, a nie jak na autostradzie – na kilku. Jeśli choćby jeden samochód utknie, pozostałe zaczynają lawinowo hamować. Zatem, przepustowość tunelu spada i powstaje korek. Tak samo dzieje się z porami, które zostają miejscami zatkane w superkondensatorze. To przekłada się na spadek sprawności pracy urządzenia, w szczególności obniża czas jego ładowania.

Jak tego uniknąć? Svyatoslav Kondrat we współpracy z międzynarodowym zespołem przetestowali przykładanie napięcia w superkondensatorze pulsami, aby stopniowo wprawiać jony w ruch i nie zatykać porów. Jak się okazało, był to strzał w dziesiątkę. Metoda zaproponowana przez naukowców przyspiesza proces ładowania urządzenia i daje obiecujące wyniki. Dodatkowo przeprowadzając badania dla procesu rozładowania naukowcy Ci wykazali, że proces ten również można przyspieszyć. Przeprowadzone eksperymenty pokrywają się z wykonanymi przed naukowców licznymi symulacjami komputerowymi. Wyniki naszych badań są obiecujące. To ciekawe, że można przyspieszać nie tylko proces ładowania superkondensatora, ale także jego rozładowanie. Dzięki temu możemy usprawnić różne procesy technologiczne, np. przyspieszyć i zwiększyć wydajność odsalania wody – twierdzi Svyatoslav Kondrat.

Rozwiązanie zaproponowane przez badaczy otwiera nowe możliwości oraz przybliża nas do ulepszenia istniejących już rozwiązań stosowanych do zasilania urządzeń mobilnych. Choć kondensatory znane są od dekad, to dopiero superkondensatory wychodzą naprzeciw oczekiwaniom konsumentów na miarę czasów, w których żyjemy. Dzięki takim odkryciom jesteśmy bliżej opracowania szybszych i wydajniejszych urządzeń do magazynowania energii, a to dopiero początek rewolucji w tej dziedzinie.

 

 

 

Źródło: Instytut Chemii Fizycznej PAN, Autor: Magdalena Osial
0 0 votes
Article Rating